A 200g block on a 50cm long string swings in a circle, it's frictionless and 75rpm. What is its speed and tension on string

See Answers (2)

Accepted Answer

The speed of the block is given by:
[tex] V = w * R [/tex] Where,
w: angular speed
r: radius of the circular path.
The angular velocity must be in radians over seconds:
[tex] w = (75) * (2\pi) * (\frac{1}{60})w = 7.85 [/tex] The radius must be in the subway:
[tex] R = (50) * (\frac{1}{100})R = 0.5 m [/tex] Then, the speed is given by:
[tex] V = (7.85) * (0.5) [/tex] [tex] V = 3.925 \frac{m}{s} [/tex] The tension of the rope is the centripetal force.
By definition, the centripetal force is:
[tex] F = m * (\frac{V^2}{R}) [/tex] Where,
m: mass of the block in kilograms
Substituting values:
[tex] F = 0.2 * (\frac{3.925 ^ 2}{0.5})F = 6.2 N [/tex] Answer:
its speed and tension on string are:
[tex] V = 3.925 \frac{m}{s} F = 6.2 N [/tex]

Suggested Answer

angular velocity = (75x2pie)/60                          =2.5pie ras^-1  linear velocity(or speed) at end of string, v = radius x angular velocity                                                           v= 0.5 x 2.5pie                                                           v=3.93 ms^-1tension of string (I beleve is centeral force aplied by string), F= (mv^2)/r                                                                                      F= (0.2 x 3.93^2)/0.5                                                                                      F=6.18 N(sorry if wrong)

Related Question in Physics