A 90-kg tight end moving at 9.0 m/s encounters at 400 N•s impulse. Determine the velocity change of the tight end.

See Answers (2)

Accepted Answer

Answer: The change velocity of the tight end is 4.44 m/sExplanation:Mass of the tight end = 90 kgInitial velocity =[tex]u[/tex] = 9.0 m/sFinal velocity =[tex]v[/tex][tex]Impulse=Force\times Time[/tex][tex]Impulse=Mass \times acceleration\times Time[/tex][tex]a=\frac{dv}{dt}=\frac{[v-u]}{t}[/tex][tex]impulse=Mass \times [v-u][/tex][tex]400 Nm=90 kg\times[v-9.0 m/s][/tex][tex]v=13.44 m/s[/tex]Change in velocity = 13.44 m/s - 9m/s = 4.44 m/sThe change velocity of the tight end is 4.44 m/s

Suggested Answer

Δp=mΔv400 N.s = (90kg) (vf-9m/s)400 = 90 vf - 810400 + 810 = 90 vf1210 = 90vf vf= 13.4 m/s

Related Question in Physics