Coordinate R (1,5) S (6,-1) and T (1,-4) are connected to form ∆ RST if ∆ RST is congruent to ∆ RWT what are the coordinates of W

See Answers (1)

Suggested Answer

The triangles are similar, then ratio of corresponding sides of triangle are equal. The ratio of corresponding sides of two triangle RST and triangle RWT is,[tex]\begin{gathered} \frac{RS}{RW}=\frac{RT}{RT} \\ \frac{RS}{RW}=1 \\ RS=RW \end{gathered}[/tex]Determine the length of side RS.[tex]\begin{gathered} RS=\sqrt[]{(1-6)^2+(5+1)^2} \\ =\sqrt[]{25+36} \\ =\sqrt[]{61} \end{gathered}[/tex]So the distance between point RW is also equal to square root 61.For option (-4,2),[tex]\begin{gathered} RW=\sqrt[]{(-4-1)^2+(5-2)} \\ =\sqrt[]{25+9} \\ =\sqrt[]{36} \end{gathered}[/tex]For o(-6,-1),[tex]\begin{gathered} RW=\sqrt[]{(-6-1)^2+(5+1)^2} \\ =\sqrt[]{49+36} \\ =\sqrt[]{85} \end{gathered}[/tex]For (-4,-1),[tex]\begin{gathered} RW=\sqrt[]{(1+4)^2+(5+1)^2} \\ =\sqrt[]{25+36} \\ =\sqrt[]{61} \end{gathered}[/tex]So coordinate of point W is (-4,-1) as it give same distance of RS and RW.Answer: (-4,-1)