Suggested Answer
String (d) contains an error.What is string ?Traditionally, in computer programming, a string is a sequence of characters as a type of literal constant or variable. In the latter, you can modify its element to change its length or modify it.CalculationDivision algorithm Let aa be an integer and dd a positive integer. Then there are unique integers qq and rr with 0\leq r<d0≤r<d such that a=dq+ra=dq+rqq is called the \textbf{quotient}quotient and rr is called the \textbf{remainder}remainderq=a\textbf{ div }dq=a div dr=a\textbf{ mod }dr=a mod dThe parity check bit is:x_{n+1}=x_1+x_2+....+x_n\textbf{ mod }2x n+1=x 1 +x 2 +....+x nmod 2(a) The last digit is 1 (which is the parity check bit). We then need to check that the sum of all other digits is equal to the parity check bit modulo 2.\begin{align*} x_{n+1}&=x_1+x_2+....+x_n\textbf{ mod }2 \\ &=0+0+0+0+0+1+1+1+1+1\textbf{ mod }2 \\ &=5\textbf{ mod }2 \\ &=1 \end{align*}x n+1=x 1 +x 2 +....+x nmod 2=0+0+0+0+0+1+1+1+1+1 mod 2=5 mod 2=1The sum modulo 2 is equal to the parity check bit, thus there does not appear to be an error in the string. The last digit is 1 (which is the parity check bit). We then need to check that the sum of all other digits is equal to the parity check bit modulo 2.\begin{align*} x_{n+1}&=x_1+x_2+....+x_n\textbf{ mod }2 \\ &=1+0+1+0+1+0+1+0+1+0\textbf{ mod }2 \\ &=5\textbf{ mod }2 \\ &=1 \end{align*}x n+1=x 1 +x 2 +....+x n mod 2=1+0+1+0+1+0+1+0+1+0 mod 2=5 mod 2=1The sum modulo 2 is equal to the parity check bit, thus there does not appear to be an error in the string.(c) The last digit is 0 (which is the parity check bit). We then need to check that the sum of all other digits is equal to the parity check bit modulo 2.\begin{align*} x_{n+1}&=x_1+x_2+....+x_n\textbf{ mod }2 \\ &=1+1+1+1+1+1+0+0+0+0\textbf{ mod }2 \\ &=6\textbf{ mod }2 \\ &=0 \end{align*}xn+1=x 1 +x 2 +....+x n mod 2=1+1+1+1+1+1+0+0+0+0 mod 2=6 mod 2=0The sum modulo 2 is equal to the parity check bit, thus there does not appear to be an error in the string.(d) (a) The last digit is 1 (which is the parity check bit). We then need to check that the sum of all other digits is equal to the parity check bit modulo 2.\begin{align*} x_{n+1}&=x_1+x_2+....+x_n\textbf{ mod }2 \\ &=1+0+1+1+1+1+0+1+1+1\textbf{ mod }2 \\ &=8\textbf{ mod }2 \\ &=0 \end{align*}x n+1=x 1 +x 2 +....+x n mod 2=1+0+1+1+1+1+0+1+1+1 mod 2=8 mod 2=0The sum modulo 2 is not equal to the parity check bit, thus there is an error in the string.String (d) contains an error.learn more about strings here :brainly.com/question/4087119#SPJ4