Accepted Answer
The time for one revolution is 7.4 ×[tex]10^{4}[/tex]s and the radial acceleration is 6.55 × [tex]10^{-4}[/tex]m/s².M = mass of the earthv= orbital speedv = [tex]\sqrt{\frac{GM}{r} }[/tex] or r = GM/ v²Time(t) = 2π [tex]r^{3/2}[/tex] / GM = 2πGM / v³t = 2π × 6.67 ×[tex]10^{-11}[/tex] × 6 ×[tex]10^{24}[/tex] / ( 6200)³ = 0.007388 × [tex]10^{-11}[/tex] × [tex]10 ^{18}[/tex] = 0.007388 ×[tex]10^{7}[/tex] = 7.4 × [tex]10^{4}[/tex]sNow we have to find the radial acceleration of the satellite in its orbit. Radial acceleration (r) = v² / r = v² / (GM /v²) = [tex]v^{4}[/tex]/ GM = [tex]6200^{4}[/tex] / 6.67 ×[tex]10^{-11}[/tex] ×6×[tex]10^{24}[/tex] = 6.55 × [tex]10^{-4}[/tex] m/s²Therefore the time is 7.4 ×[tex]10^{4}[/tex]s and radial acceleration is 6.55 ×[tex]10^{-4}[/tex]m/s².To know more about the earth satellite refer to the link given below:https://brainly.com/question/18496962#SPJ4