A metal cube has edges of length a=10 cm, at a temperature of 0°C. When heated to 100°C, the volume of the cube is 1005.1 cm³. Determine the coefficient of linear expansion of the metal.​

See Answers (2)

Suggested Answer

Answer:SolutionVerified by TopprCorrect option is D) Here percentage change in volume is given as, ΔV=γ×t×100where, γ=3αSo, ΔV=3α×(T1​−T2​)×100ΔV=3×2×10−5×(473−273)×100=1.2Explanation:

Suggested Answer

Answer:Explanation:Given:a = 10 cmt₀ = 0°Ct = 100°CV = 1005.1 cm³____________α - ?V₀ = a³ = 10³ = 1000 cm³Δt = t - t₀ = 100 - 0 = 100°CΔT = Δt = 100 KV = V₀·(1 + γ·ΔT)1 + γ·ΔT  = V / V₀γ·ΔT  = V / V₀ - 1 γ = ( V / V₀ - 1 ) / ΔTThe coefficient of volumetric expansion of the metal.​γ = ( 1000.5/1000 - 1 ) / 100 = 5·10⁻⁶  K⁻¹The coefficient of linear expansion of the metal α  = γ / 3 = 5·10⁻⁶/3   K⁻¹  ≈ 1.67·10⁻⁶ K⁻¹

Related Question in Physics