If y varies directly as x, find the constant of variation and the direct variation equation for the situation.
y = 0.1 when x = 0.2

See Answers (1)

Suggested Answer

[tex]\qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad \stackrel{\textit{constant of variation}}{y=\stackrel{\downarrow }{k}x~\hfill } \\\\ \textit{\underline{x} varies directly with }\underline{z^5}\qquad \qquad \stackrel{\textit{constant of variation}}{x=\stackrel{\downarrow }{k}z^5~\hfill } \\\\[-0.35em] ~\dotfill[/tex][tex]\stackrel{\textit{"y" varies with "x"}}{y=kx}\hspace{5em} \textit{we know that} \begin{cases} y=0.1\\ x=0.2 \end{cases} \\\\\\ 0.1=k(0.2)\implies \cfrac{0.1}{0.2}=k\implies 0.5=k\hspace{5em}\boxed{y=0.5x}[/tex]