Suggested Answer
standard form for a linear equation means• all coefficients must be integers, no fractions• only the constant on the right-hand-side• all variables on the left-hand-side, sorted• "x" must not have a negative coefficient[tex](\stackrel{x_1}{-4}~,~\stackrel{y_1}{1})\hspace{10em} \stackrel{slope}{m} ~=~ 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{ 3}(x-\stackrel{x_1}{(-4)}) \implies y -1= 3 (x +4) \\\\\\ y-1=3x+12\implies y=3x+13\implies -3x+y=13\implies \boxed{3x-y=-13}[/tex]