Suggested Answer
Answer:-1Step-by-step explanation:Given:[tex]i^{50}[/tex]Rewrite 50 as the product of 2 and 25:[tex]\implies i^{(2 \cdot 25)}[/tex][tex]\textsf{Apply the exponent rule} \quad a^{bc}=(a^b)^c:[/tex][tex]\implies \left(i^2\right)^{25}[/tex]Apply the imaginary number rule i² = -1 :[tex]\implies \left(-1\right)^{25}[/tex][tex]\textsf{Apply the exponent rule} \quad (-a)^n=-a^n,\:\: \textsf{ if }n \textsf{ is odd}:[/tex][tex]\implies -1^{25}[/tex]As 1²⁵ = 1 then:[tex]\implies -1[/tex]
Suggested Answer
Answer:(i)⁵⁰ = -1 Step-by-step explanation:The problem is,→ (i)⁵⁰Formula we use,→ i² = -1 Let's solve the problem,→ (i)⁵⁰→ (i²)²⁵ → (-1)²⁵ → -1 Hence, the answer is -1.