Multiply and simplify: 3i(4 - 3i) - i (2 + i)

[SOLVED] Multiply and simplify: 3i(4 - 3i) - i (2 + i)
See Answers (2)

Suggested Answer

10 + 10iApply Multiplicative Distribution Law: 12i - 9 x i^2 - 2i - i^2Rewrite by definition: i^2 = -1:12i - 9 x (-1) -2i - (-1)Remove the parentheses: 12i + 9 - 2i + 1Combine like terms: 10 + 10iAnswer 10 + 10i

Suggested Answer

Answer:10 + 10iStep-by-step explanation:Given expression:[tex]3i(4 - 3i) - i (2 + i)[/tex]Expand:[tex]\implies 12i-9i^2-2i-i^2[/tex][tex]\implies 12i-2i-9i^2-i^2[/tex][tex]\implies 10i-10i^2[/tex]Apply the imaginary number rule  i² = -1 :[tex]\implies 10i-10(-1)[/tex]Simplify:[tex]\implies 10i+10[/tex]Rewrite in standard complex form  a + bi:[tex]\implies 10+10i[/tex]