Suppose theta= 11pi/12. How do you use the sum identity to find the exact value of sin theta?

See Answers (1)

Accepted Answer

The better way is, first we have to find the equivalent in degrees[tex]2\pi=360\º[/tex][tex]\frac{11\pi}{12}=345\º[/tex]now we can change this value to [tex]-15\º[/tex]how do we get an angle like this?![tex]30\º-45\º=-15\º[/tex]then[tex]sin(30\º-45\º)=sin(30\º)*cos(45\º)-sin(45\º)*cos(30\º)[/tex][tex]\begin{Bmatrix}sin(30\º)&=&\frac{1}{2}\\\\sin(45\º)&=&cos(45\º)&=&\frac{\sqrt{2}}{2}}\end{matrix}\\\\cos(30\º)&=&\frac{\sqrt{3}}{2}\end{matrix}[/tex]now we replace this values[tex]sin(-15\º)=\frac{1}{2}*\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}*\frac{\sqrt{3}}{2}[/tex][tex]sin(-15\º)=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}[/tex][tex]\boxed{\boxed{sin(-15\º)=sin(345\º)=\frac{\sqrt{2}-\sqrt{6}}{4}}}[/tex]