The sum of two numbers is 95, and their difference is 61. What are the two numbers?

See Answers (2)

Accepted Answer

Let's call:[tex]first\#=x[/tex][tex]second\#=y[/tex]thenwhen we have a SUM, we have PLUS and when we have a DIFFERENCE, we have MINUS... Let's go then...[tex]\begin{Bmatrix}x+y&=&95\\x-y&=&61\end{matrix}[/tex]now we can sum all the rows then we got it... (This is the other way to solved this question)[tex]x+y+(x-y)=95+61[/tex][tex]x+y+x-y=156[/tex][tex]2x=156[/tex][tex]\boxed{x=78}[/tex]now we can replace this value at first or at second row, you just need to pick up one...I'll choose the second one[tex]x-y=61[/tex][tex]78-y=61[/tex][tex]y=78-61[/tex][tex]\boxed{y=17}[/tex][tex]\boxed{\boxed{\begin{Bmatrix}x&=&78\\y&=&17\end{matrix}}}[/tex]

Suggested Answer

[tex] \left \{ {x+y=95} \atop {x-y=61}} \right. \\
\\2x=156\\x= \frac{156}{2} \\
\\x=78\\
\\y=95-y\\y=95-78\\y=17[/tex]First number 78, and the second is 17 .