Accepted Answer
Answer: Range, [tex]R =\frac{a}{b}[/tex]Explanation:The equation of trajectory is:[tex]y = x tan \theta (1-\frac{x}{R})[/tex]Where, [tex]\theta[/tex] is the angle of projectile, R is the horizontal range.The equation of projectile is:y = ax-bx²[tex]\Rightarrow y = ax(1-\frac{b}{a}x)[/tex]On comparing:[tex]tan \theta = a[/tex][tex]R = \frac{a}{b}[/tex]Hence, the horizontal range is [tex]R =\frac{a}{b}[/tex]
Suggested Answer
y = a x - b x^2Range is a/by = tan Ф x - g x² / 2 u² cos² Фtan Ф = a - equation 1b = g / 2u² cos² Ф so u² cos² Ф = g /2b - equation 2R = u cos Ф * 2 * u sin Ф / g = 2/g sinФ u² cos Ф = 2 /g tan Ф u² cos² Ф by using equation 1 and equation 2 = (2 /g ) a (g / 2b ) = a / b